Preliminary communication

ÜBERGANGSMETALL-SILYL-KOMPLEXE

IV*. BILDUNG EINES RING-SUBSTITUIERTEN WOLFRAMOCEN DIHYDRID DERIVATS DURCH REAKTION VON Cp₂WCl₂ MIT Li[Si(SiMe₃)₃]**

ULRICH SCHUBERT^{*}, ANDREAS SCHENKEL und JOHANNES MÜLLER Institut für Anorganische Chemie der Universität, Am Hubland, D-8700 Würzburg (B.R.D.) (Eingegangen den 12. Juni 1985)

Summary

In the reaction of Cp_2WCl_2 with Li[Si(SiMe₃)₃] the dihydrid tungstenocene derivative [(Me₃Si)₃SiC₅H₄]₂WH₂ (3) is formed with a 56% yield. 3 crystallizes in space group $P\overline{1}$, with a 918.0(4), b 1580.9(4), c 1621.2(7) pm, α 117.63(2), β 89.95(3), γ 94.39(3)° at -40°C. The dihedral angle between the Cp planes is 140.9°.

Die Knüpfung von Übergangsmetall-Silicium-Bindungen durch Reaktion von Metall-Halogen-Verbindungen mit Silyl-Anionen ist, verglichen mit dem umgekehrten Weg (anionischer Metallkomplex + Halogensilan), eine relativ selten angewandte Methode. Da Li $[Si(SiMe_3)_3] \cdot 3THF(1)$ [2] eine der stabilsten Silyllithium-Verbindungen ist und Komplexe mit dem Si $(SiMe_3)_3$ -Liganden aufgrund der Reaktivität von Si-Si-Bindungen die Möglichkeit bieten, den Silyl-Liganden nach Knüpfung der Metall-Silicium-Bindung zu modifizieren, haben wir eine Reihe von halogenhaltigen Metallkomplexen mit 1 umgesetzt (vgl. [1]).

Bei der Reaktion von Cp_2WCl_2 (2) ($Cp = \eta^5 - C_5H_5$) mit 1 erhielten wir jedoch überraschenderweise keinen Metall-Silyl-Komplex, sondern ein Derivat des Wolframocendihydrids (3), in dem beide Cp-Liganden einen Si(SiMe₃)₃-Substituenten enthalten (Gl. 1).

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*}III. Mitt. s. Ref. 1.

^{**}Herm Prof. Dr. Max Schmidt zum 60. Geburtstag am 13.10.1985 gewidmet.

$$2 \text{ Li}[\text{Si}(\text{SiMe}_{3})_{3}] \cdot 3\text{THF} + \text{Cp}_{2}\text{WCl}_{2} \rightarrow$$
(1)
(2)
[$\eta^{5} - \text{C}_{5}\text{H}_{4}\text{Si}(\text{SiMe}_{3})_{3}$]_2WH₂ + 2 LiCl
(1)
(3)

Die beste Ausbeute an 3 (56%) erhält man, wenn 2 und zwei Äquivalente 1 im festen Zustand gemischt und bei Raumtemperatur mit Pentan versetzt werden. Dabei tritt augenblicklich Reaktion ein; Zwischenstufen sind nicht beobachtbar. In geringerer Ausbeute wird 3 allerdings auch beim Zutropfen einer Lösung von 1 zu einer Lösung von 2 oder bei der Reaktion equimolarer Mengen von 1 und 2 erhalten.

Im ¹H-NMR-Spektrum von 3 (C_6D_6) findet man neben einem Singulett bei δ 0.4 ppm (rel. TMS) für die 54 SiMe₃ -Protonen zwei jeweils nur schwach aufgespaltene Multipletts bei 4.5 und 4.3 ppm für die Cp-Protonen sowie ein Singulett im typischer Metallhydrid-Bereich (-11.8 ppm, 2H). Bei der Röntgenstrukturanalyse von 3 konnten die metallgebundenen Wasserstoffatome nicht lokalisiert werden. Das Schweratomgerüst von 3 zeigt die für Verbindungen des Typs Cp₂ML₂ typische Abwinkelung der Cp₂W-Einheit (s. Fig. 1), mit einem Winkel von 140.9° zwischen den Ebenen der Cp-Ringe. Dieser ist mit dem entsprechenden Diederwinkel in Cp₂MOH₂ (145.8°) [3] vergleichbar.

Fig. 1. Die Molekülstruktur von 3. Wasserstoffatome sind nicht gezeichnet. Wichtige Abstände und Winkel: W-C(1) 235(1), W-C(2) 224(1), W-C(3) 221(1), W-C(4) 226(1), W-C(5) 231(1), W-C(6) 235(1), W-C(7) 231(1), W-C(8) 225(1), W-C(9) 223(1), W-C(10) 227(1), C(1)-Si(1) 189(1), C(6)-Si(5) 190(1) pm. C(1)-Si(1)-Si 101.8, 109.2, 113.1(4), C(6)-Si(5)-Si 111.0, 113.4, 101.6(4)°.

C12

TABELLE 1

ATOMKOORDINATEN VON 3

Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c
w	0.11398(5)	0.30321(3)	0.02010(3)				· · · ·
C(1)	0.0986(12)	0.2372(8)	-0.1432(7)	C(6)	0.1966(12)	0.3443(7)	0.1724(7)
C(2)	0.0161(12)	0.3184(8)	-0.0987(7)	C(7)	0.2627(13)	0.4106(8)	0.1458(7)
C(3)	-0.0959(13)	0.2952(10)	-0.0509(8)	C(8)	0.1533(14)	0.4587(7)	0.1255(8)
C(4)	-0.0811(14)	0.2016(10)	-0.0595(9)	C(9)	0.0163(14)	0.4204(9)	0.1416(8)
C(5)	0.0386(12)	0.1680(8)	-0.1166(8)	C(10)	0.0426(12)	0.3495(8)	0.1677(7)
Si(1)	0,2346(3)	0.2154(2)	-0.2374(2)	Si(5)	0.2904(3)	0.2781(2)	0,2265(2)
Si(2)	0.0850(4)	0.2067(2)	-0.3589(2)	Si(6)	0.5443(3)	0.2944(2)	0.2169(2)
Si(3)	0.3364(4)	0.0703(2)	-0.2775(2)	Si(7)	0.2053(3)	0.1161(2)	0.1634(2)
Si(4)	0.4201(3)	0.3391(2)	-0.1941(2)	Si(8)	0.2295(4)	0.3630(2)	0.3831(2)
C(21)	-0.0959(14)	0.1435(11)	-0.3599(10)	C(61)	0.5985(14)	0.2583(9)	0.0951(8)
C(22)	0.0514(16)	0.3289(10)	-0.3427(9)	C(62)	0.6265(13)	0.2166(9)	0.2585(11)
C(23)	0.1707(17)	0.1416(10)	-0.4739(9)	C(63)	0.6241(13)	0.4207(8)	0.2927(9)
C(31)	0.4845(16)	0.0543(10)	-0.3609(9)	C(71)	0.2349(14)	0.0747(9)	0.2530(8)
C(32)	0.4149(16)	0.0728(9)	-0.1695(9)	C(72)	0.3095(14)	0.0423(8)	0.0583(8)
C(33)	0.1976(16)	-0.0342(9)	-0.3357(10)	C(73)	0.0075(13)	0.0974(9)	0.1302(9)
C(41)	0.5693(14)	0.3268(9)	-0.1226(9)	C(81)	0.3522(15)	0.3414(10)	0.4612(8)
C(42)	0.3446(14)	0.4564(9)	-0.1229(9)	C(82)	0.2441(16)	0.4938(10)	0.4167(9)
C(43)	0.5020(14)	0.3349(9)	-0.3016(9)	C(83)	0.0364(14)	0.3270(12)	0.3992(9)

Die sperrigen Silyl-Substituenten sind etwas vom Metall weggebogen, so dass die zentralen Silicium-Atome Si(1) und Si(5) ausserhalb der Ring-Ebenen (36.2(3) bzw. 32.2(3) pm) zu liegen kommen. Die Si-Si-Abstände (233.5 bis 234.8(4) pm; Mittelwert 234.3 pm) sind gegenüber dem für Si(SiMe₃)₃-Reste typischen Wert von etwa 236 pm [4] leicht verkürzt.

Wanderungen von metallgebundenen Silylgruppen an Cyclopentadienylliganden unter dem Einfluss von Basen sind von $Cp(CO)_2$ FeSiR₃-Derivaten bekannt [5,6]. Intermediäres Auftreten eines entsprechenden Hydrid-Komplexes $(C_5H_4SiR_3)(CO)_2$ FeH wurde zwar postuliert, konnte aber nicht nachgewiesen werden [6]. Wir vermuten, dass die Bildung von 3 analog verläuft. Danach könnten sich durch Cl/SiR_3 -Austausch zunächst Metall-Silyl-Komplexe bilden, die anschliessend baseninduzierter Silylwanderung an die Cp-Liganden unterliegen. Da Wolframocendihydrid-Derivate relativ stabil sind und zudem in 3 die metallgebundenen Wasserstoffatome durch die sperrigen Silylreste abgeschirmt sind, ist 3 (im Gegensatz zu den Eisenkomplexen) vor einer Weiterreaktion geschützt.

Die sterische Abschirmung der Hydridliganden in 3 dürfte auch der Grund dafür sein, dass 3, im Gegensatz zur Stammverbindung Cp_2WH_2 , bei Raumtemperatur nicht mit Chloroform reagiert, also kein H/Cl-Austausch stattfindet.

Experimentelles

Alle Arbeiten werden in einer Atmosphäre von trockenem Stickstoff in getrockneten und von Sauerstoff befreiten Lösungsmitteln durchgeführt.

93 mg (0.24 mmol) Cp₂WCl₂ und 222 mg (0.47 mmol) Li[Si(SiMe₃)₃]·3THF
[2] werden in einem Schlenkrohr vermischt und bei Raumtemperatur mit
15 ml Pentan versetzt. Nach 15 min Rühren wird das Reaktionsgemisch

über Filterflocken filtriert und die dunkelbraune Lösung auf 2 ml eingeengt. Beim Abkühlen auf -20°C fällt 3 in Form hellbrauner Kristalle aus. Ausb. 106 mg (56%). Fp 50°C (Zers.). Molmasse 808 (MS, bez. auf ¹⁸⁴W), Gef.: C, 40.94; H, 8.51. C₂₈H₆₄Si₈W (809.35) ber.: C, 41.55; H, 7.97%.

Röntgenstrukturanalyse von 3. Zelldaten: Monoklin, a 918.8(4), b 1580.9(4), c 1621.2(7) pm, α 117.63(2), β 89.95(3), γ 94.39(3)°, V 2077×10⁶ pm³, Raumgruppe $P\overline{1}$ (Z = 2), d(ber) 1.29 g/cm³ (-40°C). Datensammlung: 5840 unabhängige Reflexe, 2° $\leq 2\theta \leq 48^{\circ}$, Mo- K_{α} -Strahlung (λ 71.069 pm, Graphit-Monochromator), ω -scan, empirische Absorptions-Korrektur. Messtemp. -40°C.

Strukturlösung und Verfeinerung. Patterson-Methode. Verfeinerung nach der Methode der kleinsten Quadrate mit der vollständigen Matrix (Syntex XTL); alle Nicht-Wasserstoffatome anisotrop verfeinert; Wasserstoffatome (mit Ausnahme der metallgebundenen H-Atome) lokalisiert bzw. berechnet, aber nicht verfeinert. R = 0.065, $R_w = 0.085$ unter Einschluss aller Reflexe $(1/w = \sigma(F_0)^2)$. Abschliessende Atomkoordinaten s. Tab. 1.

Dank. Wir danken dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit, der Fa. Wacker-Chemitronic für eine Chemikalien-Spende.

Literatur

- 1 U. Schubert und A. Schenkel, Transition Met. Chem., 10 (1985) 210.
- 2 (a) W. Biffar und H. Nöth, Z. Naturforsch., Teil B, 36 (1981) 1509; (b) A. Gutekunst und A.G. Brook, J. Organomet. Chem., 225 (1982) 1.
- 3 A.J. Schultz, K.L. Stearley, J.M. Williams, R. Mink und G.D. Stucky, Inorg. Chem., 16 (1977) 3303.
- 4 A. Rengstl und U. Schubert, Chem. Ber., 113 (1980) 278.
- 5 S.R. Berryhill und B. Sharenow, J. Organomet. Chem., 221 (1981) 143.
- 6 G. Thum, W. Ries, D. Greissinger und W. Malisch, J. Organomet. Chem., 252 (1983) C67.